OPTIMIZE TEXTILE BOOK RECOMMENDATION SYSTEM USING DEEP LEARNING ALGORITHMS

Authors

  • Sitti Nur Alam Universitas Yapis Papua
  • Asep Saeppani Universitas Sebelas April
  • Iwan Setiawan Nusa Putra University

Keywords:

Optimization, Recommendation Systems, Textile Books, Deep Learning Algorithms.

Abstract

The research aims to optimize the recommendation system for textile books by applying deep learning algorithms. The textile industry, rich in content and material variation, requires a system of recommendations that can accurately accommodate the diverse needs of its users. Deep learning, with its sophistication in processing large and complex data, offers solutions in improving the quality of recommendations. The study explores the use of deep learning models in interpreting user preferences and book characteristics, with the hope of producing more relevant and personal predictions. Research methods that literature conducts systematically through the collection of data from scientific sources such as journals, conferences, and related articles published in the last decade. The results show that deep learning algorithms such as Convolutional Neural Networks (CNN) and Recurrent Neural Network (RNN) have been successfully applied in improving the accuracy of book recommendation systems, including in textile contexts. These models are able to understand and process textile information and user preferences more deeply than traditional algorithms. The research also revealed important factors that influence model performance, such as data quantity and quality, model architecture, and parameter setting. Although there are limitations associated with resource use and the need for large datasets, the use of deep learning algorithms in recommendation systems for textile books shows significant potential in improving personalization and user satisfaction.

Downloads

Download data is not yet available.

References

Abbate, S., Centobelli, P., Cerchione, R., Nadeem, S. P., & Riccio, E. (2024). Sustainability trends and gaps in the textile, apparel and fashion industries. Environment, Development and Sustainability, 26(2), 2837-2864.

Adhabi, E., & Anozie, C. B. (2017). Literature review for the type of interview in qualitative research. International Journal of Education, 9(3), 86–97.

Atalla, S., Daradkeh, M., Gawanmeh, A., Khalil, H., Mansoor, W., Miniaoui, S., & Himeur, Y. (2023). An intelligent recommendation system for automating academic advising based on curriculum analysis and performance modeling. Mathematics, 11(5), 1098.

Basrowi, S. (2008). Memahami penelitian kualitatif. Jakarta: Rineka Cipta, 12(1), 128–215.

Catrysse, P. B., & Fan, S. (2024). Radiative cooling textiles using industry-standard particle-free nonporous micro-structured fibers. Nanophotonics, (0).

Champe, J., & Kleist, D. M. (2003). Live supervision: A review of the research. The Family Journal, 11(3), 268–275.

da Silva, F. L., Slodkowski, B. K., da Silva, K. K. A., & Cazella, S. C. (2023). A systematic literature review on educational recommender systems for teaching and learning: research trends, limitations and opportunities. Education and Information Technologies, 28(3), 3289-3328.

Ding, L., & Wu, S. (2024). Digital transformation of education in china: A review against the backdrop of the 2024 World Digital Education Conference. Science Insights Education Frontiers, 20(2), 3283-3299.

Education, E., & Hammoda, B. (2023). O 2024 World Scientific Publishing Company. Digital Transformation For Entrepreneurship, 5, 71.

Gabriel, M., & Luque, M. L. D. (2020). Sustainable development goal 12 and its relationship with the textile industry. The UN Sustainable Development Goals for the Textile and Fashion Industry, 21-46.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gulson, K. N. (Ed.). (2024). World yearbook of education 2024: digitalisation of education in.

Håkansson Lindqvist, M., Mozelius, P., Jaldemark, J., & Cleveland Innes, M. (2024). Higher education transformation towards lifelong learning in a digital era–a scoping literature review. International Journal of Lifelong Education, 43(1), 24-38.

Indrawati, S. M., & Kuncoro, A. (2021). Improving competitiveness through vocational and higher education: Indonesia’s vision for human capital development in 2019–2024. Bulletin of Indonesian Economic Studies, 57(1), 29-59.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

Lu, L., Hou, J., Yuan, S., Yao, X., Li, Y., & Zhu, J. (2023). Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites. Robotics and Computer-Integrated Manufacturing, 79, 102431.

Maphosa, V., & Maphosa, M. (2023). Fifteen years of recommender systems research in higher education: Current trends and future direction. Applied Artificial Intelligence, 37(1), 2175106.

Mauro, N., Hu, Z. F., & Ardissono, L. (2023). Justification of recommender systems results: a service-based approach. User Modeling and User-Adapted Interaction, 33(3), 643-685.

Menghani, G. (2023). Efficient deep learning: A survey on making deep learning models smaller, faster, and better. ACM Computing Surveys, 55(12), 1-37.

Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., & Zhang, D. (2023). Biometrics recognition using deep learning: A survey. Artificial Intelligence Review, 56(8), 8647-8695.

Paun, I., Moshfeghi, Y., & Ntarmos, N. (2023). White box: on the prediction of collaborative filtering recommendation systems’ performance. ACM Transactions on Internet Technology, 23(1), 1-29.

Prabandani, E. A. (2020). RANCANG BANGUN SISTEM REKOMENDASI UNTUK PENENTUAN PRODUK KAPAS PADA INDUSTRI TEKSTIL MENGGUNAKAN FUZZY DATABASE MODEL TAHANI (STUDI KASUS: PT. PANDATEX) SKRIPSI (Doctoral dissertation, UIN SUNAN KALIJAGA YOGYAKARTA).

Praditya, N. W. P. Y., Permanasari, A. E., & Hidayah, I. (2021, July). Designing a tourism recommendation system using a hybrid method (Collaborative Filtering and Content-Based Filtering). In 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT) (pp. 298-305). IEEE.

Pratiwi, D. R. (2020). Analisis Daya Saing Industri Tekstil dan Produk Tekstil (TPT) Indonesia di Pasar ASEAN. Jurnal Budget: Isu dan Masalah Keuangan Negara, 5(2), 44-66.

Punch, K. F. (2013). Introduction to social research: Quantitative and qualitative approaches. sage.

Purushothama, B. (2024). Humidification and ventilation management in textile industry. Crc Press.

Putri, H. D., & Faisal, M. (2023). Analyzing the effectiveness of collaborative filtering and content-based filtering methods in anime recommendation systems. Jurnal Komtika (Komputasi dan Informatika), 7(2), 124-133.

Satya, V. E., Hermawan, I., Budiyanti, E., & Sari, R. (2018). Pengembangan industri tekstil nasional: kebijakan inovasi & pengelolaan menuju peningkatan daya saing. Yayasan Pustaka Obor Indonesia.

Sharma, R., Gopalani, D., & Meena, Y. (2023). An anatomization of research paper recommender system: Overview, approaches and challenges. Engineering Applications of Artificial Intelligence, 118, 105641.

Shlezinger, N., Whang, J., Eldar, Y. C., & Dimakis, A. G. (2023). Model-based deep learning. Proceedings of the IEEE.

Silaban, E. (2020). Pengaruh Price Earning Ratio, Earning Pershare, Return on Asset, dan Debt to Equity Ratio terhadap Harga Saham Perusahaan Sub-Sektor Industri Textile yang Go Public terdaftar di bursa Efek Indonesia (Doctoral dissertation, Prodi Akuntansi).

Sugiyono, S. (2010). Metode penelitian kuantitatif dan kualitatif dan R&D. Alfabeta Bandung.

Tharenou, P., Donohue, R., & Cooper, B. (2007). Management research methods. Cambridge University Press.

Williamson, B., Komljenovic, J., & Gulson, K. (Eds.). (2023). World Yearbook of Education 2024: Digitalisation of Education in the Era of Algorithms, Automation and Artificial Intelligence. Taylor & Francis.

Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognition, 137, 109347.

Zed, M. (2004). Metode peneletian kepustakaan. Yayasan Obor Indonesia.

Zhao, L. T., Wang, D. S., Liang, F. Y., & Chen, J. (2023). A recommendation system for effective learning strategies: An integrated approach using context-dependent DEA. Expert Systems with Applications, 211, 118535.

Downloads

Published

2024-04-07

How to Cite

Sitti Nur Alam, Asep Saeppani, & Iwan Setiawan. (2024). OPTIMIZE TEXTILE BOOK RECOMMENDATION SYSTEM USING DEEP LEARNING ALGORITHMS. Indonesian Journal of Education (INJOE), 4(1), 326–336. Retrieved from https://injoe.org/index.php/INJOE/article/view/125

Issue

Section

Articles